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1  | INTRODUC TION

Progesterone (PROG) not only comprises a physiological regulator 
of reproduction,1-5 but also exerts important effects in the nervous 
system. Indeed, this neuroactive steroid regulates development of 
neurones6-9 and glial cells,10-13 as well as the myelination process.14-18 
In addition, PROG exerts important protective effects in neurode-
generative and psychiatric disorders.15,19-27 However, whether the 
effects of PROG are the result of itself and/or its metabolites is still 
poorly considered. Among PROG metabolites, the effects of allo-
pregnanolone (ALLO), also known as tetrahydroprogesterone, in the 
nervous system have attracted the attention of several researchers. 
Therefore, even if many aspects of this neurosteroid remain to be 
clarified, an extensive literature on it is now available. In the present 
review, we discuss the state of art of this neuroactive steroid, con-
sidering its synthesis, mechanism of actions, and physiological and 
protective effects. In addition, whether neurodegenerative and psy-
chiatric disorders, as well as peripheral steroid contents, influence 

the amount of this neuroactive steroid in the nervous system and 
whether sex dimorphism may occur are also taken into consideration.

2  | SYNTHESIS AND MECHANISM OF 
AC TION

In the nervous system, PROG is actively converted by the enzyme 5α-
reductase (5α-R) into dihydroprogesterone (DHP) and subsequently 
by the action of the enzymes 3α-hydroxysteroid oxidoreductase or 
3β-hydroxysteroid oxidoreductase into ALLO and isoallopregna-
nolone (ie, the 3β-isomer of ALLO).28,29 Two isoforms of 5α-R, called 
type 1 and type 2, are responsible for the metabolism of neuroactive 
steroids, including PROG.30-33 Type 1 isoform is expressed in corti-
cal, hippocampal and olfactory bulb glutamatergic neurones and in 
some output neurones of the amygdala and thalamus,34 with high 
levels in midbrain, corpus callosum, anterior commissure, optic chi-
asm, pons and spinal cord,33,35,36 and particularly in purified myelin 
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Abstract
Allopregnanolone, a 3α,5α-progesterone metabolite, acts as a potent allosteric mod-
ulator of the γ-aminobutyric acid type A receptor. In the present review, the syn-
thesis of this neuroactive steroid occurring in the nervous system is discussed with 
respect to physiological and pathological conditions. In addition, its physiological and 
neuroprotective effects are also reported. Interestingly, the levels of this neuroac-
tive steroid, as well as its effects, are sex-dimorphic, suggesting a possible gender 
medicine based on this neuroactive steroid for neurological disorders. However, allo-
pregnanolone presents low bioavailability and extensive hepatic metabolism, limiting 
its use as a drug. Therefore, synthetic analogues or a different therapeutic strategy 
able to increase allopregnanolone levels have been proposed to overcome any phar-
macokinetic issues.
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preparations obtained from the rat brain.35,37,38 At the cellular level, 
this isoform has been detected in oligodendrocytes and neurones,39-

41 in microglia42 and astrocytes,39,40 and in Schwann cells.43-46 Type 
2 isoform is widely expressed from the forebrain to the brain stem 
and cerebellum of the adult rat47 and also highly expressed in the 
spinal cord, particularly in oligodendrocytes.36

Four human 3α-hydroxysteroid oxidoreductase (HSOR) iso-
zymes, but only one isoform in rats, have been cloned so far.48 
3α-HSOR and 3β-HSOR has been identified in the central nervous 
system (CNS)49; in particular, 3α-HSOR has been detected in the 
rat cerebral cortex, cerebellum 50 and spinal cord,36 whereas, in the 
mouse brain, it is co-localised with 5α-R type 1 in neurones of the 
cerebral cortex, hippocampus, olfactory bulb, amygdala and thala-
mus.34 At the cellular level, in addition to neurones, 3α-HSOR also 
appears to be highly localised in cultures of type 1 astrocytes39,40 
and oligodendrocytes.36,51 Interestingly, the formation of ALLO by 
3α-HSOR decreases with the differentiation of oligodendrocytes.51

Interestingly, in the context of the growing literature regarding 
the role of the gut microbiota-brain axis in human health and dis-
ease,52-57 it is important to highlight that, as recently demonstrated, 
local steroidogenesis also occurs in the adult male rat colon.58 In 
particular, the levels of ALLO detected in this tissue are significantly 
higher than those present in plasma. In addition, the mRNA levels of 
3α-HSOR present in the adult male rat colon are significantly higher 
than those present in the cerebral cortex.58

The metabolic conversions by the enzymes 5α-R, 3α-HSOR and 
3β-HSOR have a deep impact on the mechanism of action of PROG. 
Indeed, although DHP, similar to its precursor, is still able to interact 
with intracellular PROG receptor, ALLO and isoallopregnanolone in-
teract with GABAA receptor. In particular, ALLO is a potent ligand 
of this non-classical steroid receptor,59,60 whereas isoallopregnano-
lone does not bind directly to the GABAA receptor61 but, instead, 
antagonises the effect of ALLO on the GABAA receptor.62,63 In this 
context, it is important to recall the molecular composition of the 
GABAA receptor (Figure 1). This pentameric ionotropic receptor is 
able to respond differently to benzodiazepines, ALLO or to other 
modulators depending on the subunit composition. In mammals, it 
can consist of 19 subunits, grouped in eight classes: α(1-6), β(1-3), 

γ(1-3), δ, ε, θ, π and ρ(1-3).64 In the brain, the most common subunit 
combination includes two α1, two β2 and one γ2 subunits,64,65 with 
a binding site for modulators placed at the interface between α and β 
subunits.66 Despite the fact that receptors containing the δ subunit, 
mainly located extrasynaptically, are the most sensitive to neuroste-
roid modulation,67-69 these molecules, and ALLO in particular, may 
affect GABAA receptor function in other ways. For example, they 
can promote the phosphorylation of α4 or β3 subunits.70,71 On the 
other hand, the composition of GABAA subunits may be altered by 
continuous administration of PROG or ALLO72 (Figure 1). A deeper 
presentation of GABAA receptor composition and ligand binding is 
provided in other recent reviews.72-74

3  | LE VEL S OF ALLO UNDER 
PHYSIOLOGIC AL AND PATHOLOGIC AL 
CONDITIONS

3.1 | Physiological conditions

The first characteristic of ALLO levels is that they may differ in re-
lation to the compartment analysed. This is a consequence of me-
tabolism by 5α-R and 3α-HSOR, which is differentially expressed in 
the nervous system. Thus, ALLO levels show differences between 
the nervous system, plasma and cerebrospinal fluid (CSF), as well as 
between the CNS and peripheral nervous system (PNS). Moreover, 
they also differ between males and females on dioestrus day.75 In 
addition, the levels of PROG metabolites, such as ALLO, its precur-
sor DHP and isoallopregnanolone, are higher in the brain of pseudo-
pregnant females than in the male brain.76

Sex differences in the levels of these PROG metabolites may be 
the result of a sex dimorphism of the steroidogenic enzymes syn-
thesising these molecules. Indeed, in green anole lizards, 5α-R type 
2 is higher in the brain of females than in the male brain.77 In rat 
cerebellum, 5α-R is significantly higher in males, whereas 3α-HSOR 
is significantly higher in pro-oestrus females than in males.50

As observed in gonadectomised animals, the levels of ALLO 
in the nervous system are also influenced by its circulating levels. 

F I G U R E  1   GABAA receptor structure 
and allopregnanolone mechanism of 
action. The 19 different subunits of the 
receptor and the mechanism of action 
of allopregnanolone are shown. In the 
box: effects of allopregnanolone on 
GABAA receptor subunit composition and 
phosphorylation are shown. For details, 
see text. ALLO, allopregnanolone; Cl-, 
chloride
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Interestingly, this effect shows specific features in different regions 
of the nervous system, being different in the two sexes and depen-
dent on the duration of gonadal hormone deprivation.78 For exam-
ple, in both the male cerebral cortex and cerebellum, levels of ALLO 
are decreased after long-term gonadectomy (ie, 4 months), whereas 
these effects do not occur in the corresponding structures of the 
female brain.78 Interestingly, as reported recently, 3α-HSOR expres-
sion in the cerebellum is also sex-dimorphic.50

This neuroactive steroid is also important during brain develop-
ment for adolescent and adult behaviour and for nervous system 
maturation.79 Indeed, the levels of ALLO in the forebrain of em-
bryonic rats vary widely throughout development. During the last 
pregnancy period, ALLO levels sharply increase and decline prior to 
parturition.80 Some of these effects are related to a different func-
tioning of the dorsal hippocampus, probably related to alterations 
in the expression of GABA receptors containing α4 and δ subunits, 
which are molecular alterations that can persist into adult age and 
can, in part, explain the reported behavioural disturbances.81

The levels of ALLO in the nervous system, as well as of the other 
PROG metabolites, are also affected by neurodegenerative and psy-
chiatric disorders. These changes have been demonstrated to be 
different in males and females, in agreement with many neurodegen-
erative and psychiatric disorders showing sex-dimorphic features. 
Some examples of them are discussed in the following subsections.

3.2 | Pathological conditions

3.2.1 | Mood disorders

Several clinical and experimental observations have clearly shown 
that the plasma and/or CSF levels of ALLO are altered in stress-
related disorders and psychiatric diseases, such as anxiety-like be-
haviour and depression, post-partum depression and post-partum 
anxiety.82-92 A decrease in the plasma levels of ALLO has been also 
observed in association with increased depression and anxiety 
as well as symptoms in anorexic and overweight/obese women.93 
Interestingly, a decrease in the expression of 5α-R type 1 enzyme 
has been reported in prefrontal cortex Brodmann's area 9 of de-
pressed patients.94

The plasma levels of ALLO are also decreased in human alcohol-
ics,95 and are altered after ethanol withdrawal in the mouse cerebral 
cortex and hippocampus.96 In agreement, polymorphic variations in 
the 3α-HSOR have been also associated with an increased risk of 
alcohol dependence.97 Interestingly, in this condition, a sex dimor-
phism of brain ALLO levels has been observed, with higher levels in 
the substantia nigra pars medialis of men.98

Mood disorders, in agreement with their sex dimorphism in term 
of incidence99-104 and/or manifestations,105-125 may also alter the 
levels of ALLO in a sex-dimorphic way. For example, the levels of this 
neuroactive steroid are decreased in the male, but not the female, 
brain mouse model of autism spectrum disorder-like behaviour.126 In 
particular, in adult males, a decrease in the levels of this neuroactive 

steroid is associated with more severe restricted and repetitive 
behaviour.127

The plasma levels of ALLO are also decreased in association with 
post-traumatic stress disorders (PTSD) re-experiencing and depres-
sive symptoms in PTSD patients, as well as with enhanced contex-
tual fear memory and impaired fear extinction in PTSD experimental 
models.128,129 Interestingly, in female PTSD patients, the observed 
low levels of ALLO in the CSF are associated with impairment of 
the enzyme synthesising this neuroactive steroid (ie, 3α-HSOR).130 
However, levels of ALLO are decreased in the medial orbital frontal 
cortex of male, but not female, PTSD patients.131

Another interesting example of alteration in ALLO levels is rep-
resented by post-finasteride syndrome (PFS). Finasteride (commer-
cially named Propecia or Proscar) is an inhibitor of two isoforms of 
the 5α-R (ie, type 1 and 2), although it has higher affinity for type 2 in 
humans.132,133 Approved in 1997 for the treatment of androgenetic 
alopecia at 1 mg day-1, this drug has been shown to lead to a signifi-
cant reduction in the progression of baldness and the stimulation of 
new hair growth.134 5α-R inhibitors have generally been described 
as well-tolerated and relatively safe drugs; however, recent obser-
vations have led to a more critical re-evaluation of these concepts 
(Figure  2). Indeed, 5α-R inhibitors not only induced side effects 
during the treatment, but also they may persist after drug discon-
tinuation inducing the so named PFS. Among these serious adverse 
side effects, there are sexual side effects (ie, low libido, erectile 
dysfunction, decreased arousal and difficulty in achieving orgasm), 
depression, anxiety and cognitive complaints.135 Data obtained in 
PFS patients show a decrease in the plasma levels of ALLO.136 It is 
interesting to note that, also in an experimental model of PFS, the 
plasma levels of this neuroactive steroid were decreased. This alter-
ation was associated with a decrease in ALLO levels in the cerebral 
cortex,137 where a decrease in the gene expression of GABAA recep-
tor α4 and β3 subunits was observed137 (Figure 2).

3.2.2 | Neurodegenerative disorders

Altered levels of ALLO have been also reported in several neuro-
degenerative conditions and may differ in the two sexes, accord-
ing to the sex-dimorphic characteristics of neurodegenerative 
disorders.104,138-144 For example, as reported in the caudate nu-
cleus of Parkinson's disease (PD) patients, the 3α-HSOR type 3 is 
up-regulated.145 In the brain of an experimental model of PD (ie, 
mouse injected with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine), 
the levels of ALLO were increased in a manner similar to that oc-
curring in the plasma of these animals.146 Accordingly, the block in 
ALLO production by the administration of a 5α-R inhibitor, such as 
dutasteride, exerted protective effects on dopamine neurones in the 
same animal model147

Altered levels of ALLO are also detected in patients affected by 
multiple sclerosis (MS). For example, decreased levels of this neu-
roactive steroid have been detected in the the CSF of relapsing-
remitting MS male adult patients,148 as well as in brain samples of 
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male MS patients.149 Observations in an experimental model of MS, 
such as the experimental autoimmune encephalomyelitis (EAE) rat 
MS model,150,151 confirmed alterations in ALLO levels. Interestingly, 
these changes depend on the pathological phase considered, as well 
as the sex. For example, the levels of this neuroactive steroid increase 
at the acute phase of the disease (ie, 14  days post-immunisation) 
in the spinal cord of males, but not females.150 By contrast, at the 
chronic phase (ie, 40 days post-immunisation), no changes were re-
ported in both sexes.151 The pattern in plasma is different. Indeed, 
at the acute phase, ALLO levels are decreased in females, but not 
males,150 whereas, at the chronic phase, the ALLO plasma levels are 
increased only in male animals.151 The levels of ALLO were altered 
in a sex-dimorphic way also depending on the nervous region con-
sidered. Indeed, in the female, but not the male, cerebellum, ALLO 
levels are decreased both at the acute150 and chronic phase of the 
disease.151 In the male, but not the female, cerebral cortex, an in-
crease in the levels of ALLO was observed at the acute phase of 
the disease.150 At the chronic phase, the levels of this neuroactive 
steroid were unaffected in the cerebral cortex of male and female 
rats.151 Sex differences in ALLO levels have been also detected in 
human relapsing-remitting MS patients. Indeed, ALLO levels in the 
CSF are higher in male than in female patients.152 However, this dif-
ference is observed in the active, but not the stable, phase, where 
the levels are comparable in the two sexes.152

Brain levels of ALLO have been reported to be affected in a sex-
dimorphic way also in an experimental model of traumatic brain 
injury (TBI).76,153,154 Indeed, TBI decreased the brain levels of this 
neuroactive steroid in female mice,153 but not male mice.154

Diabetes mellitus alters central (ie, diabetic encephalopathy), as 
well as peripheral (ie, diabetic peripheral neuropathy), nervous func-
tion. ALLO levels are decreased in the cerebral cortex of both long-
term (ie, 3 months post-induction) diabetic male and female rats.155 
By contrast, the levels of this neuroactive steroid are decreased in 
the spinal cord of diabetic males, but not diabetic females.155 Long-
term diabetes also induced a decrease in ALLO levels in a peripheral 
nerve, such as the sciatic nerve, with altered levels in female ani-
mals, but not male animals.155 Similar to that reported in MS, and also 
in case of diabetes mellitus, alterations in the ALLO levels depend 
on the pathological phase considered. Indeed, short-term diabetes 
(ie, 1 month postinduction) induces a decrease in the levels of this 

neuroactive steroid in the cerebral cortex and hippocampus of male 
animals.156,157 In addition, an increase in the ALLO levels occurs only 
in the diabetic male sciatic nerve.158

Altered levels of this neuroactive steroid have been also re-
ported in other animal models of peripheral neuropathy. For ex-
ample, in the sciatic nerve of the sterol regulatory element binding 
protein-1C knockout mice, a model of peripheral neuropathy as a 
result of the ablation of the key lipogenic transcription factor,159 the 
levels of ALLO are increased at 10 months of age compared to those 
observed in wild-type animals.160 The crush injury of the rat sciatic 
nerve induced a decrease in the levels of ALLO, in agreement with 
the reduced levels of its precursor, DHP. These events may be asso-
ciated with a decrease in the expression of enzyme 5α-R in the distal 
portion of the injured nerve.161

An important component of the peripheral neuropathy is the 
neuropathic pain. As demonstrated in an animal model of neuro-
pathic pain induced by peripheral nerve injury, the levels of ALLO 
are increased in the spinal cord, together with increased expression 
and activity of 3α-HSOR.162 As proposed, the increase in the levels 
of neuroactive steroid and its synthesising enzyme, 3α-HSOR, ap-
pears to be an adaptive response to cope with pain.163,164 Indeed, an 
increase in ALLO levels has been reported in the rat lateral thalamus 
(ie, an important brain region for pain modulation) after spared nerve 
injury.165

4  | EFFEC TS OF ALLO UNDER 
PHYSIOLOGIC AL AND PATHOLOGIC AL 
CONDITIONS

4.1 | Physiological effects

ALLO regulates lordosis and other motivated behaviours166 by its ac-
tion on GABAA receptors located in the midbrain ventral tegmental 
area.167,168 However, this action appears to be mediated not only by 
this neurotransmitter receptor, but also by PROG receptor because 
the administration of mifepristone (ie, an antagonist of PROG recep-
tor) inhibits the induction of this behavioural response to ALLO.169,170 
This effect can be explained based on the ability of ALLO to be retro-
converted into DHP by 3α-HSOR.171-173

F I G U R E  2   Allopregnanolone (ALLO) 
levels are decreased in plasma of PFS 
patients, as well as in its experimental 
model. In the male rat, the levels, as well 
as the GABAA receptor composition, are 
also modified in the cerebral cortex. For 
details, see text. ALLO, allopregnanolone; 
GABA, γ-aminobutyric acid; PFS, post-
finasteride syndrome
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A critical role for ALLO has been also demonstrated in brain matu-
ration. The physiological fluctuations of this steroid occurring during 
rodent fetal life and after birth80 may contribute to maintaining the 
low level of arousal activity, characteristic of fetal brain.174 In addi-
tion, neonatal levels of ALLO promote the formation of neuronal cir-
cuitry and support the survival of developing neurones.175 Moreover, 
this neuroactive steroid is involved in the structural formation of the 
cerebral cortex, thalamus and hippocampus.176,177 Furthermore, 
ALLO is involved in myelin formation of the CNS.12 However, this 
neuroactive steroid is not only important for brain fetal maturation, 
but also for the pregnant mother. Indeed, during pregnancy, an in-
crease of ALLO levels occurs in the maternal peripheral circulation, 
as well as in the maternal brain.178,179 In rats, the increased levels of 
this neuroactive steroid interfere with the hypothalamic-pituitary-
adrenal (HPA) axis reducing, in particular during late pregnancy, the 
response to stress exposure of the mother.180-183

ALLO exerts a crucial role also in the adult brain. At this stage, 
the enzymatic complex 5α-R/3α-HSOR co-localises in glutamater-
gic and GABAergic neurones of the cerebral cortex, hippocampus, 
amygdala and thalamus, suggesting that its activity is relevant for 
the synthesis and the effects of neurotransmitters in these cells.34 
Indeed, ALLO is able to increase the protein content of glutamic acid 
decarboxylase in the olfactory bulb.184 In addition, this steroid reg-
ulates the neuronal cytoskeleton because its administration to ova-
riectomised animals decreases microtubule-associated protein Tau 
and glycogen synthase kinase 3β expression in the cerebellum.185

ALLO is also involved in the mood regulation. For example, to-
gether with glucocorticoids, this neuroactive steroid regulates the 
stress response. Thus, an increase in the ALLO levels has been re-
ported in plasma and cerebral cortex of adult male rats after swim 
stress.186

ALLO is also able to regulate the dopaminergic system.187-190 
In an experimental model in which dopaminergic signalling was al-
tered (ie, animals reared in social isolation), a decrease in the levels 
of ALLO occurred in the brain but not in plasma.191 In addition, in 
the foot shock stress model, treatment with this neuroactive ste-
roid stimulates the extracellular dopamine release from cortical 
dopaminergic neurones,192 and prevents the dopamine increase 
in the cerebral cortex and in the nucleus accumbens.193 Moreover, 
ALLO modulates the levels and metabolism of this neurotransmit-
ter during the oestrous phase of the female ovarian cycle. Indeed, 
it decreases the levels of dopamine and the dopamine metabolite 
3,4-dihydroxyphenylacetic acid in the striatum,194 as well as the do-
pamine output in the nucleus accumbens and prefrontal cortex in 
freely moving rats.193 In addition, females showing high progester-
one levels (ie, in pro-oestrus) are less responsive to ALLO treatment 
than in other oestrous phases.195

Interestingly, it has been proposed that ALLO may also affect the 
enzymatic activity of the DNA base excision repair (BER) pathway. 
Indeed, as recently reported in both natural and stressful conditions, 
the treatment with this neuroactive steroid is able to modulate 
the synthesis of BER pathway enzymes in sheep hippocampus and 
amygdala.196

Physiological effects of ALLO have been also reported in the 
PNS. In Schwann cells, ALLO treatment enhances GABA synthesis 
through an increased expression of glutamic acid decarboxylase197 
and also promotes glutamate uptake through an increase in the 
excitatory amino acid carrier 1.198 ALLO treatment is also able to 
regulate, in peripheral nerves and Schwann cells, the expression of 
specific transcription factors involved in the myelination process (ie, 
Krox-20)199 and the expression of a myelin protein (ie, peripheral my-
elin protein 22, PMP22).200,201 An antagonist of the GABAA receptor, 
such as the bicuculline, is able to completely abolish the stimulatory 
effect exerted by ALLO on PMP22 in Schwann cell cultures. In ad-
dition, a GABAA receptor agonist (ie, muscimol) shows a stimulatory 
effect on PMP22 that was comparable to that of ALLO.202 These 
observations, together with the finding that peripheral nerves, as 
well as Schwann cells, express GABAA receptors,15,200 may suggest 
that the effect on peripheral myelin are mediated by the GABAA re-
ceptor.200,201 Indeed, isoallopregnanolone, which does not directly 
interact with GABAA receptor, does not alter PMP22 expression. 
Interestingly, the effect of ALLO on the expression of myelin pro-
teins is sex-dimorphic. Indeed, the treatment with this neuroactive 
steroid increases the expression of PMP22 and of another myelin 
protein, such as glycoprotein zero, in female rat Schwann cells, but 
not in male cells.203

4.2 | Effects of ALLO in pathological conditions

The therapeutic potential of ALLO has been explored in different 
pathological conditions, demonstrating interesting beneficial ef-
fects (Figure  3). ALLO treatment exerts anxiolytic and anti-stress 
actions.204,205 Activation of GABAA receptors by this neuroactive 
steroid appears to be responsible for these effects.206 Interestingly, 
corticotrophin-releasing hormone (CRH) neurones, the primary reg-
ulators of the HPA axis, are regulated by GABAergic inhibition.207 
In particular, it has been shown that CRH neurones are controlled 
by delta (δ)-containing GABAA receptors.208 In agreement, in vitro 
studies showed that the human CRH promoter activity was inhib-
ited by ALLO after basal or forskolin-induced promoter activity.209 
In addition, in virgin female rats, ALLO administration was able to 
reduce CRH gene expression in the parvocellular paraventricular 
nucleus.180 Similarly, recent evidence in sheep has demonstrated 
that, in stressful conditions, this neuroactive steroid reduced CRH 
gene expression, as well as pro-opiomelanocortin expression, in 
anterior pituitary, resulting in diminished levels of plasma adreno-
corticotrophic hormone and cortisol.210 By contrast, the anti-
depressive effect exerted by ALLO, at least in the forced swimming 
model, appears also to involve the stimulation of dopamine D2-like 
receptors.211 In addition, it has been observed that, in the nucleus 
accumbens of learned helplessness rats (ie, an experimental model 
of depression), the astroglial glutamate transporter-1 and glutamine 
synthetase system is normalised by ALLO treatment.212 In this con-
text, it is interesting to note that effective antidepressant treatment 
is able to increase the reduced levels of ALLO observed in depressed 
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patients.213 In agreement, in an experimental model, the antidepres-
sant fluoxetine was able to increase ALLO levels.214 Interestingly, 
in mood and anxiety disorders, ALLO treatment shows sex-specific 
features. Indeed, this neuroactive steroid attenuates in females, but 
not in males, the HPA axis responses to interleukin-1β in adult pre-
natally stressed rats.215 Also only in females, ALLO treatment blocks 
the stress-induced reinstatement of cocaine-seeking behaviour in-
duced by yohimbine.216 ALLO treatment before stress reduced basal 
CRF mRNA expression in male rats.217 Interestingly, recent observa-
tions obtained in rats show sex- and brain region-specific regulation 
of CRF after ALLO treatment, suggesting new sex-specific therapeu-
tic approaches based on this neuroactive steroid for stress-related 
disorders and addiction.218

Despite ALLO treatment shows anxiolytic effects, women with 
premenstrual dysphoric disorder show an altered sensitivity to this 
neuroactive steroid over the menstrual cycle compared to healthy 
controls.219 In these patients, the negative mood symptoms are an-
tagonised by isoallopregnanolone treatment in the premenstrual 
phase, reducing negative mood symptoms in premenstrual dys-
phoric disorder.220 As suggested, a possible hypothesis for this para-
doxical effect could be changes in GABAA receptor composition (ie, 
an up-regulation of the α4, β, δ subunit expression) during the luteal 
phase.221

Similarly, in D1CT-7 mice (ie, an experimental model of Tourette 
syndrome), ALLO treatment exacerbated the Tourette syndrome 
symptoms,222 whereas isoallopregnanolone administration is able to 
reduce the number of tic-like behaviours induced by stress.223

ALLO treatment has also been reported to exert protective ef-
fects in experimental models of neurodegeneration. For example, 
this neuroactive steroid is protective against kainic acid-induced ex-
citotoxicity in the hippocampus in vivo,224 reduces seizures,225-229 
prevents cell apoptosis in the spinal cord of streptozotocin (STZ) 
diabetic rats,230 and protects against stroke,231 oxygen-glucose 
deprivation,232 TBI233 and the neurotoxic effects exerted by human 
immunodeficiency virus.234

ALLO treatment exerts protective effect also in spinal cord 
trauma. For example, in organotypic spinal cord cultures put under 
injury (ie, a weight drop model), this neuroactive steroid, by activa-
tion of GABAA receptors, is able to decrease membrane damage and 
prevent neuronal death.235

ALLO is also effective in experimental model of MS, such as 
EAE, where the treatment reduces axonal injury,149,236 as well as in 
Alzheimer’s disease (AD) models, where it is able to induce neuro-
genesis/oligodendrogenesis and to reduce β-amyloid levels237,238 
and bioenergetics deficits.239 In particular, for the neuroprotec-
tive effects of i.v. ALLO treatment in AD, the dosing and treatment 

F I G U R E  3   Neuroprotective effects of allopregnanolone. Treatment with this neuroactive steroid shows: (A) beneficial effects on spinal 
cord trauma, (B) prevention of neuronal death, (C) reduction of cholesterol accumulation and stroke, (D) decrease in epileptic events, (E) 
beneficial effects in nervous damage induced by diabetes mellitus, (F) protective effects on neurodegenerative diseases (eg, Alzheimer’s 
disease, Parkinson's disease and amyotrophic lateral sclerosis), (G) anxiolytic and anti-stress actions, (H) effects against the neurotoxicity 
exerted by human immunodeficiency virus (HIV), (I) protective effects in an experimental model of Niemann-Pick type C and in (J) 
neuroinflammatory conditions (eg, multiple sclerosis and experimental autoimmune encephalomyelitis), and (K) analgesic effects against 
neuropathic pain
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regimen appears to be crucial.237,238,240 By contrast, intranasal de-
livery of this neuroactive steroid has been proposed as an excellent 
therapeutic strategy against seizures.241 In this context, it is import-
ant to highlight that neuroactive steroids represent an important 
target for the treatment of focal epileptic disorders.242 Indeed, alter-
ation of ALLO synthesis modulate status epilepticus dynamics.243,244 
In addition, protective effects have been reported in an experimen-
tal model of amyotrophic lateral sclerosis (ie, Wobbler mouse),245 
in PD experimental models,246,247 as well as in a pilot clinical study 
performed in patients affected by fragile X-associated tremor/ataxia 
syndrome, where the ALLO treatment was reported to improve cog-
nitive function and neurodegeneration.248,249

In an animal model of Niemann-Pick type C disease, this neu-
roactive steroid has been demonstrated to delay the onset of neu-
rological symptoms, increasing Purkinje and granule cell survival in 
the cerebellum, reducing cortical ganglioside accumulation, cho-
lesterol accumulation and inflammation, and enhancing myelin-
ation.175,250,251 Interestingly, the combination of this neuroactive 
steroid with cyclodextrin and miglustat seems to ameliorate motor 
but not cognitive deficits.252

Few experimental observations have been performed to eval-
uate possible sex difference in the protective effects of ALLO on 
neurodegeneration. As demonstrated, a low dose of this neuroac-
tive steroid induces a higher neuroprotection from ischaemic dam-
age in females compared to males.253 In an animal model of epilepsy, 
the treatment shows greater antiseizure potency in females than in 
males; this effect was associated with higher levels of extrasynaptic 
delta subunit of GABAA receptors in female animals.254

An important aspect in neurodegenerative and psychiatric 
diseases is the neuroinflammation.255-260 Indeed, ALLO exerts 
a variety of protective effects in this process. For example, this 
neuroactive steroid reduces protein-protein interactions initiating 
toll-like receptor 4 (TLR4)-dependent signalling in immune cells 
and the brain261 alongside of TLR7.262 In addition, its treatment de-
creases microglia reactivity and lymphocyte infiltration in an EAE 

experimental model,149,236 as well as neuroinflammatory burden 
in AD models.237,238 A protective effect has been also reported in 
ischaemic stroke, where its treatment down-regulates the produc-
tion of pro-inflammatory cytokines (ie, tumour necrosis factor-α and 
interleukin-6) protecting against blood-brain barrier disruption and 
reducing infarct size.263 Finally, after TBI, ALLO decreases the ex-
pression levels of interleukin-1β and tumour necrosis factor-α, in the 
rat brain,264 and increases a potent inhibitor of the complement con-
vertases that are activators of the inflammatory cascade.265 Indeed, 
it has been recently demonstrated that administration of this neu-
roactive steroid to primary cell cultures or to a microglial cell line 
(ie, BV-2), induces changes in morphology and phagocytic activity in 
microglial cells.266 These results might help to shed light on the pro-
tective mechanisms of ALLO in inflammatory conditions. Protective 
effects of ALLO have been also reported in peripheral neuropathies. 
For example, in an experimental model of peripheral diabetic neu-
ropathy (ie, rats rendered diabetic by streptozotocin injection), ALLO 
treatment improves nerve conduction velocity, thermal threshold, 
mRNA levels of a myelin protein such as PMP22, and skin innerva-
tion density.267 In addition, this neuroactive steroid is also able to 
counteract myelin abnormalities in rat peripheral nerves induced by 
the ageing process.16,268

Neuropathic pain is another important component of the dam-
age in the PNS and CNS. In this context, it is important to note that 
3α-HSOR is expressed in pain information processing areas of the 
CNS, such as the dorsal root ganglia and the dorsal horn of the spi-
nal cord.163,269 Indeed, blockade of 3α-HSOR and the consequent 
inhibition of the local synthesis of THP in these two compartments 
enhances neuropathic pain induced by sciatic nerve injury.163,164 In 
addition, the synthesis of ALLO in the dorsal horn of the spinal cord 
is regulated by an important neuropeptide involved in pain process-
ing, such as substance P.270 Altogether, these observations suggest 
that endogenous ALLO is involved in pain processing. From this 
point of view, ALLO exerts analgesic effects. For example, treatment 
with this neuroactive steroid ameliorates diabetic-induced thermal 

F I G U R E  4   Protective effects exerted by allopregnanolone analogues, brexanolone and ganaxolone, in different neuropathologies. For 
details see text. PTSD, post-traumatic stress disorder; MS, multiple sclerosis
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hyperalgesia in the STZ model.230 In addition, it suppresses allody-
nia/hyperalgesia evoked by antineoplastic drugs, such as vincris-
tine271 or oxaliplatin,272 or by spinal nerve ligation.273 The analgesic 
actions of ALLO appear to be mediated by the potentiation of GABAA 
receptor activity and the inhibition of T-type Ca2+ channels.274,275

Altogether, these observations indicate that ALLO may be con-
sidered as a potential candidate for the treatment of psychiatric,276 
traumatic277 and neurodegenerative disorders.278,279 However, one 
of the disadvantages of the treatment with natural ALLO is repre-
sented by its rapid metabolism and their low oral bioavailability.87 
On this basis, extensive research has been devoted to synthesising 
analogues of ALLO,280-283 showing promising neuroprotective ef-
fects.205,277,284-286 In particular, as depicted in Figure  4, two syn-
thetic analogues, such as ganaxolone and brexanolone, appear to 
be very promising. Indeed, ganaxolone has been demonstrated to 
be neuroprotective in an experimental model of Niemann-Pick type 
C,287 in an animal model of PTSD,288 in Angelman syndrome,289 and 
in animal models of epilepsy and related conditions.290-292 In addi-
tion, its treatment is able to reduce neurodevelopmental impairment 
following preterm birth,293 to regulate GABA transport and neuroin-
flammation in MS,294 to induce remyelination in focal demyelination 
of the corpus callosum 295 and to be effective for the treatment of 
ethanol withdrawal-induced seizures.296

Brexanolone has been recently approved by the US Food and 
Drug Administration for the specific treatment of post-partum de-
pression,205,297,298 even some concerns regarding its use have been 
also raised299,300 (Figure 4).

An alternative to the use of synthetic steroids is to stimulate 
the endogenous synthesis of ALLO. One option is the activation of 
steroidogenesis with ligands of TSPO, a part of the macromolecular 
complex involved in the transfer of cholesterol into mitochondria 
(ie, the first step of the steroidogenesis).301 Indeed, treatment with 
TSPO ligands has been reported to exert neuroprotective effects, 
such as in EAE mice using etifoxine302 or XBD173,303 in rat models 
of PTSD administered with midazolam304 or YL-IPA08,305 in a rat ex 
vivo glaucoma model with PK11195306 and in diabetic rats with Ro5-
4864 (307,308) or AC-5216.309

Another possibility is the activation of liver X receptors (LXRs). 
Indeed, treatment with a LXR ligand such as the GW3965 increases 
the levels of ALLO in the spinal cord and the cerebral cortex, as well 
as the levels of its precursor, DHP, in the sciatic nerve of diabetic 
rats.307,310 This, in turn, exerts neuroprotective effects on thermal 
nociceptive activity, nerve conduction velocity and Na+,K+-ATPase 
activity.310

5  | CONCLUSIONS

As defined many decades ago,311 neuroactive steroids represent im-
portant physiological modulators of the nervous system. They are 
involved in basic processes such as myelination, neuronal transmis-
sion and brain maturation. Among the natural neuroactive steroids, 
ALLO has received particular attention because of its relevance in 

such processes. Concerning ALLO physiology, many issues have 
to be taken into account. For example, its levels are linked to the 
expression of the enzymatic complex of 5α-R/3α-HSOR, thus pro-
ducing a different profile in relation to the nervous structure being 
considered. In addition, neuroactive steroid plasma levels, as well 
as the sex, have an influence on the levels of ALLO in the nervous 
system.

In addition, as more recently explored, the neuroactive steroids 
are also neuroprotective agents. Among them, ALLO appears to be 
particularly relevant because of its implication in neuropathological 
situations. Up to now, its importance in depression and anxiety, in 
neurodegenerative diseases (eg, AD, PD and diabetes mellitus), in 
traumatic events (eg, spinal cord trauma, nerve injury), and in inflam-
matory environments (eg, MS, ischaemia), is becoming increasingly 
evident. ALLO exerts its protective effects mainly by interaction 
with the GABAA receptor, although, as a result of the ability of the 
enzyme 3α-HSOR to retro-convert ALLO into DHP, this steroid may 
also interact with PROG receptor. The unfavourable pharmacoki-
netic of ALLO limits its therapeutic potential, as observed in many 
experimental paradigms. Thus, alternative strategies have been ex-
plored. For example, synthetic analogues have been successfully ap-
plied to several pathological conditions, also leading to its inclusion 
in clinical practice. An alternative to the synthetic ALLO derivative 
administration is represented by the pharmacological stimulation 
of steroidogenesis, and consequently ALLO synthesis, by specific 
ligands.

In conclusion, a deeper investigation of the mechanisms involved 
in the protective effects of neuroactive steroids in general, and of 
ALLO in particular, is needed to propose new therapeutic strategies 
based on this neuroactive steroid for the treatment of neuropatho-
logical conditions.
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